The rise of hematite: origin and strategies to reduce the high onset potential for the oxygen evolution reaction

نویسندگان

  • Beniamino Iandolo
  • Björn Wickman
  • Igor Zorić
چکیده

Hematite (a-Fe2O3) has emerged as a promising material for photoelectrochemical (PEC) water splitting thanks to its abundance, stability in an aqueous environment, favorable optical bandgap and position of the electronic valence band. Nevertheless, its performance as a photoanode is considerably lower than what is theoretically achievable. In particular, the high electrochemical potential usually needed to initiate water oxidation is detrimental to the prospect of using hematite for practical devices. In this review we elucidate the appealing, as well as the challenging, aspects of using hematite for PEC water splitting and focus on the recent efforts towards lowering the onset potential of water oxidation. We examine and rationalize several strategies pursued to achieve this goal involving manipulation of the hematite/electrolyte interface, as well as improving relevant properties of hematite itself.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nickel Oxide/Carbon Nanotubes as Active Hybrid Material for Oxygen Evolution Reaction

Carbon nanotubes are of great interest due to their high surface area and rich edge sites, which are favorable for wide applications. Here, a simple and efficient routine is presented by decoration of multi-wall carbon nanotube (MWCNT) with nickel oxide (NiO) nanoparticles.The morphologies of NiO-MWCNT  were  investigated  by  using scanning  electron  microscope  (SEM)  and energydispersive X-...

متن کامل

Metal Oxide/Pt Based Nanocomposites as Electrocatalysts for Oxygen Reduction Reaction

Fuel cell is a promising choice for clean energy because of its eco-friendly system, high energy conversion efficiency and high power density. Recently, much of the research work is focused on the system of combining metal oxides to increase the durability and surface area and to reduce the cost. In this study, among the various fabrication methods, we used the precipitation method to synthesis...

متن کامل

Origin and evolution of ore-forming fluids in the magnetite±apatite Lake Siah deposit (Bafq): Evidence of fluid inclusions and oxygen stable isotope

The Lake Siah magnetite ± apatite deposit is situated in the northeastern of Bafq and Central Iran tectonic zone. The host rock of deposit is composed from lower Cambrian volcano-sedimentary sequence that has exposed as caldera complex. The iron mineralization is as massive ore and includes magnetite and hematite which form with apatite, quartz and calcite gangue minerals. Based on fluid inclus...

متن کامل

Structural, magnetic and dielectric properties of pure and Dy-doped Co3O4 nanostructures for the electrochemical evolution of oxygen in alkaline media

In this study, spinel-type cobalt oxide (Co3O4) and Co3-xDyxO4 (x = 0.04 and 0.05 molar ratio) nanoparticles were synthesized via combustion method at 700 °C. Crystallite nature, phase purity and thermal analysis of the prepared compounds were investigated by PXRD, FT-IR and TGA techniques. Structural analyses were performed by the FullProf program employing profile matching with constant scale...

متن کامل

Immobilization of a molecular cobalt electrocatalyst by hydrophobic interaction with a hematite photoanode for highly stable oxygen evolution.

A unique modification of a hematite photoanode with perfluorinated Co-phthalocyanine (CoFPc) by strong binding associated with hydrophobic interaction is demonstrated. The resultant molecular electrocatalyst - a hematite photoanode hybrid material showed a significant onset shift and high stability for the photoelectrochemical oxidation evolution reaction (OER).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015